Author Topic: Compact Core KF Costs analysis and alternate pricing ideas  (Read 993 times)

idea weenie

  • Major
  • *
  • Posts: 5100
Legal disclaimer: all of this is Fan Rules, but if the Catalyst official people want to use anything I have posted in this thread as ideas for future products, they can do so and at most the recompense I will receive will consist of the name of the product that these rules are in.

This thread was recommende I create to discuss alternate pricing ideas for the KF cores in Strategic Operations.  To do so I priced out 25 ships (ranging rom 100 ktons to 2.5 MTons in increments of 100 ktons) for the base KF cost, and created three cost variations for consideration.

This thread is only for comparing the Compact Core costs of different cost formats.  It is not for comparing Standard Jump Core costs, or additional costs from Dropship Collars or Lithium-Fusion Batteries.  Anyone that wishes to test these rules with canon or fanon vessels need to remove all Dropship Collars and Lithium-Fusion Batteries from their design before pricing out their vessels.


The first setup is a chart of the base costs, as established in Strategic Operations.  The prices listed are for the KF Drive and KF support systems, after multiplying for the Compact Core (5x), and after multiplying for the Warship cost multiplier of 2.  The specific equation used was:
"=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*5+(1000000000+2000*$C6))*2"
(C6 was the cell with the Warship's mass, so you can copy this into cell D6.  You then copy cells C6 and D6 into cells C7:D7 through C30:D30, just make sure to increment the Warship mass in each C-cell.)

The below chart contains columns showing vessel mass, KF Drive costs (after the 5x Compact multiplier and 2x Warship multiplier), the KF Support Costs (after the 2x Warship multiplier), the total of the KF Costs, and the KF Costs per ton of Warship.  You can see that the KF Drive Costs are almost flat in price, while the KF Support costs have a 2 billion up-front costs and are then 4000 C-Bills per ton of Warship.

Looking at the Final Total KF Costs you can see that even though the mass of the vessel is 25* higher, the Final Total price of the KF Drive and Support systems is ~3.5* higher.  The cost/ton for larger hulls is also less than 1/7 the price/ton for the smaller hull.  As can be seen, this favors larger hulls, and even just from 100 ktons to 200 ktons is a minor increase in KF drive costs.
Code: [Select]
Warship Mass (tons)   KF Drive Total Costs     KF Support Total Costs    Final Total KF Costs   C-Bills/ton
  100,000                 1,374,500,000              2,400,000,000           3,774,500,000         37,745
  200,000                 1,378,000,000              2,800,000,000           4,178,000,000         20,890
  300,000                 1,381,500,000              3,200,000,000           4,581,500,000         15,272
  400,000                 1,385,000,000              3,600,000,000           4,985,000,000         12,463
  500,000                 1,388,500,000              4,000,000,000           5,388,500,000         10,777
  600,000                 1,391,500,000              4,400,000,000           5,791,500,000          9,653
  700,000                 1,395,000,000              4,800,000,000           6,195,000,000          8,850
  800,000                 1,398,500,000              5,200,000,000           6,598,500,000          8,248
  900,000                 1,402,000,000              5,600,000,000           7,002,000,000          7,780
1,000,000                 1,405,500,000              6,000,000,000           7,405,500,000          7,406
1,100,000                 1,408,500,000              6,400,000,000           7,808,500,000          7,099
1,200,000                 1,412,000,000              6,800,000,000           8,212,000,000          6,843
1,300,000                 1,415,500,000              7,200,000,000           8,615,500,000          6,627
1,400,000                 1,419,000,000              7,600,000,000           9,019,000,000          6,442
1,500,000                 1,422,500,000              8,000,000,000           9,422,500,000          6,282
1,600,000                 1,425,500,000              8,400,000,000           9,825,500,000          6,141
1,700,000                 1,429,000,000              8,800,000,000          10,229,000,000          6,017
1,800,000                 1,432,500,000              9,200,000,000          10,632,500,000          5,907
1,900,000                 1,436,000,000              9,600,000,000          11,036,000,000          5,808
2,000,000                 1,439,500,000             10,000,000,000          11,439,500,000          5,720
2,100,000                 1,443,000,000             10,400,000,000          11,843,000,000          5,640
2,200,000                 1,446,000,000             10,800,000,000          12,246,000,000          5,566
2,300,000                 1,449,500,000             11,200,000,000          12,649,500,000          5,500
2,400,000                 1,453,000,000             11,600,000,000          13,053,000,000          5,439
2,500,000                 1,456,500,000             12,000,000,000          13,456,500,000          5,383


The first test was simply reducing the KF drive costs.  Since the KF drive is ~90% the cost of the Nightwing and Vincent Warships, I wanted to see what would happen if I just dropped the price so the KF core within the same magnitude of costs as the rest of the Warship.  I took all the prices from the Strategic Operations book for KF costs, divided them by 10, and made this chart.  Again, the Cost is the Final Total cost for the KF Drive and Support systems.

The formula used was
"=((13550000+5000*ROUNDUP(2+($C6*0.4525)/25000,0)+5000*(30+ROUNDUP($C6/20000,0)))*5+(100000000+200*$C6))*2"
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)
  100,000               377,450,000
  200,000               417,800,000
  300,000               458,150,000
  400,000               498,500,000
  500,000               538,850,000
  600,000               579,150,000
  700,000               619,500,000
  800,000               659,850,000
  900,000               700,200,000
1,000,000               740,550,000
1,100,000               780,850,000
1,200,000               821,200,000
1,300,000               861,550,000
1,400,000               901,900,000
1,500,000               942,250,000
1,600,000               982,550,000
1,700,000             1,022,900,000
1,800,000             1,063,250,000
1,900,000             1,103,600,000
2,000,000             1,143,950,000
2,100,000             1,184,300,000
2,200,000             1,224,600,000
2,300,000             1,264,950,000
2,400,000             1,305,300,000
2,500,000             1,345,650,000
This does reduce the price per ton, but the advantage still lies with larger hulls.  The cost per ton is just 1/10 that of the original list, so at least the KF drive is closer in price to the rest of the components.


The second test was removing all the the KF Support components, and just using an exponential cost on the KF Drive.
"=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*5)*($C6/100000)^1.1"

This formula takes the total mass of the Warship, divides that by 100k, and raises that to the 1.1 power.  The cost per ton increases by roughly 50%, but this gives a reason to use smaller hulls compared to larger hulls.
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)       C-Bills/ton
  100,000                687,250,000          6,873
  200,000              1,476,903,831          7,385
  300,000              2,312,886,247          7,710
  400,000              3,181,894,443          7,955
  500,000              4,077,396,006          8,155
  600,000              4,993,667,140          8,323
  700,000              5,931,329,570          8,473
  800,000              6,887,021,848          8,609
  900,000              7,859,316,498          8,733
1,000,000              8,847,098,331          8,847
1,100,000              9,845,976,828          8,951
1,200,000             10,861,856,771          9,052
1,300,000             11,890,977,725          9,147
1,400,000             12,932,820,178          9,238
1,500,000             13,986,938,470          9,325
1,600,000             15,047,668,214          9,405
1,700,000             16,124,863,489          9,485
1,800,000             17,213,310,017          9,563
1,900,000             18,312,743,198          9,638
2,000,000             19,422,926,592          9,711
2,100,000             20,543,647,740          9,783
2,200,000             21,667,222,654          9,849
2,300,000             22,808,086,094          9,917
2,400,000             23,958,961,217          9,983
2,500,000             25,119,703,149         10,048


These final three ideas were changing the constant x2 Warship cost multiplier to 1+(Warship mass/100 ktons), or other values.

This formula was used for dividing the Warship mass by 100 ktons:
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*5+(1000000000+2000*$C6))*(1+$C6/100000)

In this case the lowest price per ton wound up being for vessels near 300 ktons, though vessels in the 100 ktons to the 800 ktons would have their KF drive cost per ton be within 25% of that minimum.
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)   C-Bills/ton
  100,000               3,774,500,000     37,745
  200,000               6,267,000,000     31,335
  300,000               9,163,000,000     30,543 * lowest *
  400,000              12,462,500,000     31,156
  500,000              16,165,500,000     32,331
  600,000              20,270,250,000     33,784
  700,000              24,780,000,000     35,400
  800,000              29,693,250,000     37,117
  900,000              35,010,000,000     38,900
1,000,000              40,730,250,000     40,730
1,100,000              46,851,000,000     42,592
1,200,000              53,378,000,000     44,482
1,300,000              60,308,500,000     46,391
1,400,000              67,642,500,000     48,316
1,500,000              75,380,000,000     50,253
1,600,000              83,516,750,000     52,198
1,700,000              92,061,000,000     54,154
1,800,000             101,008,750,000     56,116
1,900,000             110,360,000,000     58,084
2,000,000             120,114,750,000     60,057
2,100,000             130,273,000,000     62,035
2,200,000             140,829,000,000     64,013
2,300,000             151,794,000,000     65,997
2,400,000             163,162,500,000     67,984
2,500,000             174,934,500,000     69,974


Warship mass divided by 500 ktons:
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*5+(1000000000+2000*$C6))*(1+$C6/500000)

Here the lowest cost per ton was for vessels near 600 ktons to 700 ktons.  The 100 kton vessel's KF core was ~1/3 more expensive per ton than the second most expensive, and ~50% more expensive than the 200 kton vessel.
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)   C-Bills/ton
  100,000              2,264,700,000     22,647
  200,000              2,924,600,000     14,623
  300,000              3,665,200,000     12,217
  400,000              4,486,500,000     11,216
  500,000              5,388,500,000     10,777
  600,000              6,370,650,000     10,618 * lowest *
  700,000              7,434,000,000     10,620
  800,000              8,578,050,000     10,723
  900,000              9,802,800,000     10,892
1,000,000             11,108,250,000     11,108
1,100,000             12,493,600,000     11,358
1,200,000             13,960,400,000     11,634
1,300,000             15,507,900,000     11,929
1,400,000             17,136,100,000     12,240
1,500,000             18,845,000,000     12,563
1,600,000             20,633,550,000     12,896
1,700,000             22,503,800,000     13,238
1,800,000             24,454,750,000     13,586
1,900,000             26,486,400,000     13,940
2,000,000             28,598,750,000     14,299
2,100,000             30,791,800,000     14,663
2,200,000             33,064,200,000     15,029
2,300,000             35,418,600,000     15,399
2,400,000             37,853,700,000     15,772
2,500,000             40,369,500,000     16,148


Warship mass divided by 1 million tons:
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*5+(1000000000+2000*$C6))*(1+$C6/1000000)

In this case the lowest price per ton was for vessels massing 900 ktons, while the vessels 300 ktons and smaller paid more per ton of KF core than the 2.5 MTon core.
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)   C-Bills/ton
  100,000              2,075,975,000     20,760
  200,000              2,506,800,000     12,534
  300,000              2,977,975,000      9,927
  400,000              3,489,500,000      8,724
  500,000              4,041,375,000      8,083
  600,000              4,633,200,000      7,722
  700,000              5,265,750,000      7,523
  800,000              5,938,650,000      7,423
  900,000              6,651,900,000      7,391 * lowest *
1,000,000              7,405,500,000      7,406
1,100,000              8,198,925,000      7,454
1,200,000              9,033,200,000      7,528
1,300,000              9,907,825,000      7,621
1,400,000             10,822,800,000      7,731
1,500,000             11,778,125,000      7,852
1,600,000             12,773,150,000      7,983
1,700,000             13,809,150,000      8,123
1,800,000             14,885,500,000      8,270
1,900,000             16,002,200,000      8,422
2,000,000             17,159,250,000      8,580
2,100,000             18,356,650,000      8,741
2,200,000             19,593,600,000      8,906
2,300,000             20,871,675,000      9,075
2,400,000             22,190,100,000      9,246
2,500,000             23,548,875,000      9,420

If other people want to test these pricings with other designs I would request the following:
1) No Dropship Collars or Lithium-Fusion Batteries (to keep the comparison simple)
2) The Vessel design is in CODE brackets
3) For each option you show the final total KF costs vs the vessel's costs (and remember that changing the KF core's price will affect the vessel's price).

Daryk

  • Major General
  • *
  • Posts: 40490
  • The Double Deuce II/II-σ
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #1 on: 27 July 2024, 10:35:43 »
I recommend against non-whole number exponentials, despite the handful of square roots already in the system.  In general, you want designs to be possible with pen and paper.

idea weenie

  • Major
  • *
  • Posts: 5100
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #2 on: 27 July 2024, 11:12:24 »
I recommend against non-whole number exponentials, despite the handful of square roots already in the system.  In general, you want designs to be possible with pen and paper.

I tried, but then you get a 200 kton Warship's compact core being 4* as expensive as the 100 kton vessel, and a 2 MTon vessel's compact core being 400* as expensive as the 100 kton vessel (i.e. a McKenna vs a Nightwing).

Using the numbers for the KF Drive alone the prices would be:
100 kton - 687,250,000
200 kton - 2,749,000,000
2 MTon - 274,900,000,000

So your McKenna-class vessels (with no Dropships or Lithium-Fusion Batteries) would be roughly a quarter trillion C-Bills just for their KF core.  The Leviathan II Warship (ignoring Dropship Collars and Lithium-Fusion Battery) would have a KF Drive that cost almost 400 Billion C-Bills.


I wanted to keep the KF costs proportional to the mass of the vessel, more expensive as it got larger, but not to the point where you are bankrupting planets with semi-realistic economies for a single capital ship.

If I multiplied the Base KF Drive costs by (mass of Warship over 100 ktons) I get this equation:
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*5)*($C6/100000)

There is a ~6% increase in cost per ton for the larger hulls compared to the smaller.  This equation would be useful if you want ships at all tonnages.
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)       C-Bills/ton
  100,000                687,250,000          6,873
  200,000              1,378,000,000          6,890
  300,000              2,072,250,000          6,908
  400,000              2,770,000,000          6,925
  500,000              3,471,250,000          6,943
  600,000              4,174,500,000          6,958
  700,000              4,882,500,000          6,975
  800,000              5,594,000,000          6,993
  900,000              6,309,000,000          7,010
1,000,000              7,027,500,000          7,028
1,100,000              7,746,750,000          7,043
1,200,000              8,472,000,000          7,060
1,300,000              9,200,750,000          7,078
1,400,000              9,933,000,000          7,095
1,500,000             10,668,750,000          7,113
1,600,000             11,404,000,000          7,128
1,700,000             12,146,500,000          7,145
1,800,000             12,892,500,000          7,163
1,900,000             13,642,000,000          7,180
2,000,000             14,395,000,000          7,198
2,100,000             15,151,500,000          7,215
2,200,000             15,906,000,000          7,230
2,300,000             16,669,250,000          7,248
2,400,000             17,436,000,000          7,265
2,500,000             18,206,250,000          7,283

The other option is Base KF drive cost * (mass of Warship divided by 100 ktons) * (1 + (mass of Warship divided by 1 million tons)) I get:
"=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000;0)+50000*(30+ROUNDUP($C6/20000;0)))*5)*(C6/100000)*(1+$C6/1000000)"
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)       C-Bills/ton
  100,000                755,975,000          7,560
  200,000              1,653,600,000          8,268
  300,000              2,693,925,000          8,980
  400,000              3,878,000,000          9,695
  500,000              5,206,875,000         10,414
  600,000              6,679,200,000         11,132
  700,000              8,300,250,000         11,858
  800,000             10,069,200,000         12,587
  900,000             11,987,100,000         13,319
1,000,000             14,055,000,000         14,055
1,100,000             16,268,175,000         14,789
1,200,000             18,638,400,000         15,532
1,300,000             21,161,725,000         16,278
1,400,000             23,839,200,000         17,028
1,500,000             26,671,875,000         17,781
1,600,000             29,650,400,000         18,532
1,700,000             32,795,550,000         19,292
1,800,000             36,099,000,000         20,055
1,900,000             39,561,800,000         20,822
2,000,000             43,185,000,000         21,593
2,100,000             46,969,650,000         22,367
2,200,000             50,899,200,000         23,136
2,300,000             55,008,525,000         23,917
2,400,000             59,282,400,000         24,701
2,500,000             63,721,875,000         25,489

Slight increase in cost per ton for the smaller hulls, but the larger hulls have a KF drive that is three times as much per ton compared to the smaller hulls.  This equation would be useful if you want larger hulls to remain relatively rare.  Not sure how much of their final design cost this would be as a percentage.

Daryk

  • Major General
  • *
  • Posts: 40490
  • The Double Deuce II/II-σ
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #3 on: 27 July 2024, 11:29:57 »
Tying the core cost to tonnage is a better approach than any exponential, I think.

idea weenie

  • Major
  • *
  • Posts: 5100
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #4 on: 27 July 2024, 22:07:09 »
Tying the core cost to tonnage is a better approach than any exponential, I think.

That just gives a flat cost per ton.  My goal is to make it where larger ships are more expensive per ton than smaller ships, so there is a reason to use the smaller hulls.


For example, it takes better materials engineering to make a 91kton jump core than a 46 kton Jump core.  By making the larger core cost more per ton, this reflects the hierarchy of design components needed to make that larger core repeatedly and reliably.

The other reason would be that larger ships will do better in battle than an equal tonnage of smaller ships (assuming both designs are as identical as possible).

Assume one Battleship vs five destroyers.  When the Battleship has been reduced to 80% armor, one of the destroyers has been destroyed.  The Battleship retains all of its firepower, but the destroyer squadron has its combined firepower reduced by 20%.  After the battleship has delivered another 20% of damage to the destroyer squadron, that is a second destroyer destroyed, but the Battleship has only lost 16% of its max armor value, putting it down to 64% armor.

A third volley of 20% and a third destroyer is killed, and the destroyer squadron only managed to inflict 12% damage on the Battleship, reducing it to 52% armor.
When the 4th destroyer is destroyed, the Battleship is at 44% armor.
For the final destroyer, the Battleship is at 40% armor.

This is what would happen if the vessels were priced equally per ton, you still have capital ships dominating.


Now if the destroyer squadron was 6 destroyers for the same price as a single Battleship, and the Battleship was 5* the mass of a single destroyer, this makes the battle a little more even.

After the first Destroyer is destroyed, the Battleship is down to 76% armor.
After a second Destroyer is destroyed, the Battleship is down to 56% armor.
After a third Destroyer is destroyed, the Battleship is down to 40% armor.
After a fourth Destroyer is destroyed, the Battleship is down to 28% armor.
After a fifth Destroyer is destroyed, the Battleship is down to 20% armor.
After the 6th Destroyer is destroyed, the Battleship is down to 16% armor.

In this case, the Destroyers fought the Battleship quite well, and depending on the ship handling the destroyers might be able to win.


Since the KF core is the key part of Warship costs, that is where I am working on.

What options do you have to avoid the massive spike in costs from using a mass^2 type function, but also result in larger ships paying more per ton for their KF cores?

Hellraiser

  • Colonel
  • *
  • Posts: 14584
  • Cry Havoc and Unleash the Gods of Fiat.
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #5 on: 27 July 2024, 22:49:39 »
That just gives a flat cost per ton.  My goal is to make it where larger ships are more expensive per ton than smaller ships, so there is a reason to use the smaller hulls.

As I mentioned in the other thread.

Largecraft have a flat "Total Cost Multiplier".

Warships happens to be 2x.

But things like ASF, Mechs, Vehicles, are all based on a formula of "1+(Tonnage/MaxTonnage)"

So a 20 ton bug mech is 1.2x the total cost of components.
While an Atlas is 2x.

The easiest thing to do to make stuff be more expensive is to get rid of the "flat" multiplier for Large Craft & give them a formula similar to Mechs & other smaller units.


IIRC it looks something like this?
Warships (and maybe Jumpships?) are 2.0
Spheroid Dropships = 28x
Aerodyne Dropships = 36x


So change that.

Warships could be "1 + Tonnage/2.5MT"   (Lowering the cost of smaller ships)   (Final Multiplier of 1.04 to 2)
Or for even more variance  "1 + Tonnage/1MT"  (Lowering for Cruisers & less but spiking for BS)    (Final Multiplier of 1.1 to 3.5)
Finally you could say Nobody goes down & BIG ships go up A LOT & do  "2 + Tonnage/500KT"    (Final Multiplier of 2.2 to 7.0)



Dropships are very pricey in their figures but also flat too so you could do something like.

Aerodyne = "31 + Tonnage/2000"   (Giving you a Final Multiplier of 31.2 to 41)

Spheroid = "23 + Tonnage/10000"   (Giving you a Final Multiplier of 23.01 to 33)
3041: General Lance Hawkins: The Equalizers
3053: Star Colonel Rexor Kerensky: The Silver Wolves

"I don't shoot Urbanmechs, I walk up, stomp on their foot, wait for the head to pop open & drop in a hand grenade (or Elemental)" - Joel47
Against mechs, infantry have two options: Run screaming from Godzilla, or giggle under your breath as the arrogant fools blunder into your trap. - Weirdo

Hellraiser

  • Colonel
  • *
  • Posts: 14584
  • Cry Havoc and Unleash the Gods of Fiat.
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #6 on: 27 July 2024, 22:59:52 »
Tying the core cost to tonnage is a better approach than any exponential, I think.

That just gives a flat cost per ton.  My goal is to make it where larger ships are more expensive per ton than smaller ships, so there is a reason to use the smaller hulls.

Tonnage is a good idea, but, it needs a divisor.
This is why the "KF Support Costs" should have been something like my final price modifier but also somewhat like what they did.

So instead of 2Bil + 4K/Ton
It could have been KF Support Costs = KF Costs * (KF Tonnage / 200K)

This would give you a KF Support Cost modifier for a 680KT Lola-III as, 1.53 roughly, with a Support cost of about 2.1 Billion.
The real issue w/ the KF Support Cost is that Flat 2 Bil starting figure.  That thing is HORRIBLE.
Change that to be a size % of the base KF Cost or even the 2 Billion, but again, a SIZE %.
Not the same flat figure for a Fox v/s a Lev
3041: General Lance Hawkins: The Equalizers
3053: Star Colonel Rexor Kerensky: The Silver Wolves

"I don't shoot Urbanmechs, I walk up, stomp on their foot, wait for the head to pop open & drop in a hand grenade (or Elemental)" - Joel47
Against mechs, infantry have two options: Run screaming from Godzilla, or giggle under your breath as the arrogant fools blunder into your trap. - Weirdo

Daryk

  • Major General
  • *
  • Posts: 40490
  • The Double Deuce II/II-σ
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #7 on: 28 July 2024, 06:08:43 »
I think Hellraiser is on the right track.  A variable final multiplier would be easier to implement.

idea weenie

  • Major
  • *
  • Posts: 5100
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #8 on: 28 July 2024, 21:29:43 »
As I mentioned in the other thread.

Largecraft have a flat "Total Cost Multiplier".

Warships happens to be 2x.

But things like ASF, Mechs, Vehicles, are all based on a formula of "1+(Tonnage/MaxTonnage)"

So a 20 ton bug mech is 1.2x the total cost of components.
While an Atlas is 2x.

The easiest thing to do to make stuff be more expensive is to get rid of the "flat" multiplier for Large Craft & give them a formula similar to Mechs & other smaller units.


IIRC it looks something like this?
Warships (and maybe Jumpships?) are 2.0
Spheroid Dropships = 28x
Aerodyne Dropships = 36x


So change that.

Warships could be "1 + Tonnage/2.5MT"   (Lowering the cost of smaller ships)   (Final Multiplier of 1.04 to 2)
Or for even more variance  "1 + Tonnage/1MT"  (Lowering for Cruisers & less but spiking for BS)    (Final Multiplier of 1.1 to 3.5)
Finally you could say Nobody goes down & BIG ships go up A LOT & do  "2 + Tonnage/500KT"    (Final Multiplier of 2.2 to 7.0)

I tried variable cost multipliers at the end of my first post in 3 variations: (1+mass/100k, 1+Mass/500k, and 1+mass/1M).  The lowest price per ton for each category was never at the beginning or end, though this might have been due to also including the KF Support Systems costs.


Here is trying the (1+mass/2.5 MTon) multiplier alone, without the KF Drive Support Systems.
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000;0)+50000*(30+ROUNDUP($C6/20000;0)))*5)*($I$1+$C6/$I$2)
To make it easier to try different methods, I changed cells I1 and I2 to use the different multipliers.  In this case I1 was set to '1', and I2 was set to 2.5M

Here is the resulting chart for hull masses ranging from 100ktons to 2.5 MTons, in increments of 100 ktons:
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)       C-Bills/ton
  100,000                714,740,000          7,147
  200,000                744,120,000          3,721
  300,000                773,640,000          2,579
  400,000                803,300,000          2,008
  500,000                833,100,000          1,666
  600,000                862,730,000          1,438
  700,000                892,800,000          1,275
  800,000                923,010,000          1,154
  900,000                953,360,000          1,059
1,000,000                983,850,000            984
1,100,000              1,014,120,000            922
1,200,000              1,044,880,000            871
1,300,000              1,075,780,000            828
1,400,000              1,106,820,000            791
1,500,000              1,138,000,000            759
1,600,000              1,168,910,000            731
1,700,000              1,200,360,000            706
1,800,000              1,231,950,000            684
1,900,000              1,263,680,000            665
2,000,000              1,295,550,000            648
2,100,000              1,327,560,000            632
2,200,000              1,359,240,000            618
2,300,000              1,391,520,000            605
2,400,000              1,423,940,000            593
2,500,000              1,456,500,000            583


In this case I1 was set to '2', and I2 was set to 500k
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000;0)+50000*(30+ROUNDUP($C6/20000;0)))*5)*($I$1+$C6/$I$2)
Here are the results for (2+Mass/500k):
Code: [Select]
Warship Mass (tons)   Cost (C-Bills)       C-Bills/ton
  100,000              1,511,950,000         15,120
  200,000              1,653,600,000          8,268
  300,000              1,795,950,000          5,987
  400,000              1,939,000,000          4,848
  500,000              2,082,750,000          4,166
  600,000              2,226,400,000          3,711
  700,000              2,371,500,000          3,388
  800,000              2,517,300,000          3,147
  900,000              2,663,800,000          2,960
1,000,000              2,811,000,000          2,811
1,100,000              2,957,850,000          2,689
1,200,000              3,106,400,000          2,589
1,300,000              3,255,650,000          2,504
1,400,000              3,405,600,000          2,433
1,500,000              3,556,250,000          2,371
1,600,000              3,706,300,000          2,316
1,700,000              3,858,300,000          2,270
1,800,000              4,011,000,000          2,228
1,900,000              4,164,400,000          2,192
2,000,000              4,318,500,000          2,159
2,100,000              4,473,300,000          2,130
2,200,000              4,627,200,000          2,103
2,300,000              4,783,350,000          2,080
2,400,000              4,940,200,000          2,058
2,500,000              5,097,750,000          2,039

In both of these cases, the 2.5 MTon vessel had the lowest cost per ton for its KF drive, and the 100 kton vessel still had the highest cost per ton for its KF core.

Some other options (so if something says 1 & 100k, it means the multiplier is 1+mass/100k):
1 & 100k = lowest @ 2 MTon
0.5 & 100k = lowest @ 1.4 MTon
0.5 & 2.5M = lowest @ 2.5 MTon
0.1 & 2.5M = lowest @ 2.5 MTon
0 & 2.5M = lowest @ 100 kton

If anyone wants to check my math, or find another pair of numbers in the final multiplier that result in the cost per ton increasing as the hull mass increases, that would be useful.
« Last Edit: 28 July 2024, 21:44:10 by idea weenie »

Hellraiser

  • Colonel
  • *
  • Posts: 14584
  • Cry Havoc and Unleash the Gods of Fiat.
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #9 on: 29 July 2024, 02:13:42 »
I think Hellraiser is on the right track.  A variable final multiplier would be easier to implement.

I think that is one step, but as IW has pointed out, the basic KF Costs from before the changes are still pretty messed up.

Code: [Select]
  100,000                 1,374,500,000              2,400,000,000           3,774,500,000         37,745
  500,000                 1,388,500,000              4,000,000,000           5,388,500,000         10,777
1,000,000                 1,405,500,000              6,000,000,000           7,405,500,000          7,406
1,500,000                 1,422,500,000              8,000,000,000           9,422,500,000          6,282
2,000,000                 1,439,500,000             10,000,000,000          11,439,500,000          5,720
2,500,000                 1,456,500,000             12,000,000,000          13,456,500,000          5,383

Which is why I was actually thinking you need a "Variable % of Tonnage" modifier done for Both the KF & again for the Final.

Because just taking 6 data points above & looking at columns 1 & 2 show you that even the old KF Cost wasn't going up nearly enough for the amount of materials being used.


So right now the new "KF Support" is 2 Billion + 4000/Ton.
The 4K/Ton seems logical.
But the 2 Billion is broken. 
I assume that was to give all WS a flat boost in cost so you didn't have Lola's barely costing more than Tiamats.

I don't actually think the Divisor should be based on Max Tonnage the way Mechs are since frankly 2.5MT is 25x the 100KT baby-vette mass.
But I also don't like going as low as 100KT isn't good either.
I'm debating between 500KT or 1MT as being a good point.  I think I prefer 500KT & keeping the base modifier as 2+ the new figure instead of 1+.
That way no WS ends up cheaper in modifier.

So an altered KF-Support Formula would be....

KF Cost * (Tonnage/500KT)  +  (4000 * Tonnage)

The Final Modifier would be "2 + (Tonnage/500KT)"

So using the same 6 ship sizes above, I added 3 new columns.   The "New" KF Support Costs, the "Final Cost Modifier" and the KF Support after Final Modifier is applied.

Code: [Select]
  100,000              1,374,500,000              2,400,000,000           3,774,500,000         37,745 274.9M + 400M (674.9M) 2.2 1.48478 Bil
  500,000              1,388,500,000              4,000,000,000           5,388,500,000         10,777 1388.5M + 2Bil (3.3885B) 3 10.1655 Bil
1,000,000              1,405,500,000              6,000,000,000           7,405,500,000          7,406 2.811B + 4Bil (6.811B) 4 27.244 Bil
1,500,000              1,422,500,000              8,000,000,000           9,422,500,000          6,282 4.2675B + 6Bil  (10.2675B) 5 51.3375 Bil
2,000,000              1,439,500,000             10,000,000,000          11,439,500,000          5,720 5.758B + 8Bil  (13.758B) 6 82.548 Bil
2,500,000              1,456,500,000             12,000,000,000          13,456,500,000          5,383 7.2825B + 10Bil  (17.2825B) 7 120.9755 Bil

Comparing column 3 to 8 you can see the 100KT ship gets cheaper in KF Structure costs, but after that things start growing.
The KF Support costs for a Lev are 10x as much as in canon.
The cost change between 500KT & 2.5MT is now 12x jump v/s 5x the tonnage giving you a very valid reason for building DDs.
« Last Edit: 29 July 2024, 02:15:27 by Hellraiser »
3041: General Lance Hawkins: The Equalizers
3053: Star Colonel Rexor Kerensky: The Silver Wolves

"I don't shoot Urbanmechs, I walk up, stomp on their foot, wait for the head to pop open & drop in a hand grenade (or Elemental)" - Joel47
Against mechs, infantry have two options: Run screaming from Godzilla, or giggle under your breath as the arrogant fools blunder into your trap. - Weirdo

idea weenie

  • Major
  • *
  • Posts: 5100
Re: Compact Core KF Costs analysis and alternate pricing ideas
« Reply #10 on: 03 August 2024, 10:11:05 »
So an altered KF-Support Formula would be....

KF Cost * (Tonnage/500KT)  +  (4000 * Tonnage)

The Final Modifier would be "2 + (Tonnage/500KT)"

So using the same 6 ship sizes above, I added 3 new columns.   The "New" KF Support Costs, the "Final Cost Modifier" and the KF Support after Final Modifier is applied.

Code: [Select]
  100,000              1,374,500,000              2,400,000,000           3,774,500,000         37,745 274.9M + 400M (674.9M) 2.2 1.48478 Bil
  500,000              1,388,500,000              4,000,000,000           5,388,500,000         10,777 1388.5M + 2Bil (3.3885B) 3 10.1655 Bil
1,000,000              1,405,500,000              6,000,000,000           7,405,500,000          7,406 2.811B + 4Bil (6.811B) 4 27.244 Bil
1,500,000              1,422,500,000              8,000,000,000           9,422,500,000          6,282 4.2675B + 6Bil  (10.2675B) 5 51.3375 Bil
2,000,000              1,439,500,000             10,000,000,000          11,439,500,000          5,720 5.758B + 8Bil  (13.758B) 6 82.548 Bil
2,500,000              1,456,500,000             12,000,000,000          13,456,500,000          5,383 7.2825B + 10Bil  (17.2825B) 7 120.9755 Bil

Comparing column 3 to 8 you can see the 100KT ship gets cheaper in KF Structure costs, but after that things start growing.
The KF Support costs for a Lev are 10x as much as in canon.
The cost change between 500KT & 2.5MT is now 12x jump v/s 5x the tonnage giving you a very valid reason for building DDs.

So a mass multiplier on the KF core itself, adding a mass-dependent value, then multiplying by another mass-multiplier?

Here is the formula I used just for the KF drive:
KF Drive Cost:
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*($C6/500000)+4000*$C6)

In this equation, a 100 kton vessel is paying 400,000,000 for the tonnage-based component and 27,490,000 for the rest of the KF drive.  You can see the results below as the third column shows that the base cost of the KF Drive varies from 4275 C-Bills/ton to 4291 C-Bills/ton.  One of us is getting a different result for the 100 kton vessel; you got 274.9M for the components, I got 27.49M for the components.

Code: ("Math") [Select]
Here is the equation I used:
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*($C6/500000)+4000*$C6)
Changing existing commas to semicolons and adding in commas to make it easier to read:
=((135,500,000+50,000*ROUNDUP(2+($C6*0.4525)/25,000;0)+50,000*(30+ROUNDUP($C6/20,000;0)))*($C6/500,000)+4,000*$C6)
substituting in the mass of the Warship (100 ktons)
=((135,500,000+50,000*ROUNDUP(2+((100,000)*0.4525)/25,000;0)+50,000*(30+ROUNDUP((100,000)/20,000;0)))*((100,000)/500,000)+4,000*(100,000))
Toss away the 4k at the end as we both got the same value:
=((135,500,000+50,000*ROUNDUP(2+((100,000)*0.4525)/25,000;0)+50,000*(30+ROUNDUP((100,000)/20,000;0)))*((100,000)/500,000)+[s]4,000*(100,000)[/s])
Start multiplying by mass:
=((135,500,000+50,000*ROUNDUP(2+(45,250)/25,000;0)+50,000*(30+ROUNDUP(5;0)))*(0.2))
=((135,500,000+50,000*ROUNDUP(2+1.81;0)+50,000*(30+5))*(0.2))
=((135,500,000+50,000*ROUNDUP(3.81;0)+50,000*(35))*(0.2))
=((135,500,000+50,000*4+1,750,000)*(0.2))
=((135,500,000+200,000+1,750,000)*(0.2))
=((135,700,000+1,750,000)*(0.2))
=((137,450,000)*(0.2))
=(137,450,000*0.2)
=(27,490,000)
=27,490,000


Here is the formula multiplying by a mass-based multiplier.
KF Drive Final Cost:
=((135500000+50000*ROUNDUP(2+($C6*0.4525)/25000,0)+50000*(30+ROUNDUP($C6/20000,0)))*($C6/500000)+4000*$C6)*(2+$C6/500000)

This has a lot of potential as it encourages smaller hulls and makes larger hulls rarer.

Here is a full chart I made if I understood and wrote the equation correctly:
Code: [Select]
Warship Mass        KF Drive Cost        KFDC/ton       KF Drive Final Cost     KFDFC/ton
  100,000             427,490,000          4,275             940,478,000           9,405
  200,000             855,120,000          4,276           2,052,288,000          10,261
  300,000           1,282,890,000          4,276           3,335,514,000          11,118
  400,000           1,710,800,000          4,277           4,790,240,000          11,976
  500,000           2,138,850,000          4,278           6,416,550,000          12,833
  600,000           2,566,980,000          4,278           8,214,336,000          13,691
  700,000           2,995,300,000          4,279          10,184,020,000          14,549
  800,000           3,423,760,000          4,280          12,325,536,000          15,407
  900,000           3,852,360,000          4,280          14,638,968,000          16,266
1,000,000           4,281,100,000          4,281          17,124,400,000          17,124
1,100,000           4,709,870,000          4,282          19,781,454,000          17,983
1,200,000           5,138,880,000          4,282          22,611,072,000          18,843
1,300,000           5,568,030,000          4,283          25,612,938,000          19,702
1,400,000           5,997,320,000          4,284          28,787,136,000          20,562
1,500,000           6,426,750,000          4,285          32,133,750,000          21,423
1,600,000           6,856,160,000          4,285          35,652,032,000          22,283
1,700,000           7,285,860,000          4,286          39,343,644,000          23,143
1,800,000           7,715,700,000          4,287          43,207,920,000          24,004
1,900,000           8,145,680,000          4,287          47,244,944,000          24,866
2,000,000           8,575,800,000          4,288          51,454,800,000          25,727
2,100,000           9,006,060,000          4,289          55,837,572,000          26,589
2,200,000           9,436,240,000          4,289          60,391,936,000          27,451
2,300,000           9,866,770,000          4,290          65,120,682,000          28,313
2,400,000          10,297,440,000          4,291          70,022,592,000          29,176
2,500,000          10,728,250,000          4,291          75,097,750,000          30,039